
Acta Technica 62 (2017), No. 6B, 899–912 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Large data adaptive hash algorithm

based on local sensitive learning

Ying Pan1

Abstract. In order to improve the ability of constructing tightly closed region embedded in
binary codes of hash function, this paper presents a hypercircle hash binary code embedding tech-
nology based on the local edge sensitive threshold. First of all, based on hyperplane hash binary
code embedding technology, this paper takes use of hypercircle to improve the hash binary code
calculation process and uses multiple hypercircle to construct enclosed regions with higher dimen-
sions; secondly, this paper designs special binary code distance measure function, namely spherical
Hamming distance to calculate local edge sensitive distance threshold of hash function according
to hypercircle embedding technology; finally, to achieve balanced partition and independence pre-
serving of hash function, an iterative optimization algorithm based on pivot gravity and repulsion
is designed. Compared with the classical hash binary code embedding technique, the advantages
of the proposed algorithm are more obvious in high dimensional data, and more simple and easy
to implement.

Key words. Hash function, Binary code, Maximum edge, Distance threshold, Hamming
distance.

1. Introduction

With the development of imaging technology and related image processing tech-
nology, various kinds of new images can be generated according to different needs.
These massive image databases pose challenges to the application of computer vi-
sion, especially to expandability of those applications requiring efficient similarity
search. In the similarity search of low dimensional data, the nearest neighbor search
and tree search algorithm are the most commonly used, but these techniques cannot
be used for high dimensional data. Therefore, in order to realize the design of solu-
tion scheme of high dimensional data, binary code embedding technology has been
widely studied [1, 2].

Because of the compact data representation and efficient indexing mechanism, the

1School of information Eigneering, Harbin University, Harbin City HeiLongJiang Province,
110051, China

http://journal.it.cas.cz

900 YING PAN

high dimensional data points can be encoded into binary data using hash function to
achieve higher scalability [3]. Existing hashing techniques can be broadly classified
into two categories: data independence and data correlation. In the data inde-
pendent technology, hash function independently selects data points [4]. Locality-
Sensitive Hashing [5, 6] (Locality-Sensitive Hashing, LSH) is one of the most well
known techniques in this kind of algorithm, which can be extended to a variety of
hash functions. In recent years, the focus of research has shifted to considering the
distribution of data points and the designing of better hash function. The most
typical examples are: spectral hash function [7], semi supervised hash function [8],
iterative quantization [9], joint optimization [10], and stochastic maximum marginal
hash function. In all of these hash technologies, the data can be divided into two
groups by hyperplane and according to the set of each data point, the data is assigned
to different binary code (e.g. −1 or +1).

In this paper, on the basis of hyperplane, the author proposes a new scheme based
on hypercircle to compute the hash binary code. Intuitively, the use of hypercircle
can provide building capacity of a more powerful tightly closed region to hyperplane
[11, 12]. For example, at least d+1 hyperplanes are needed to define a closed re-
gion of a d - dimensional space, and even for any high dimensional space, only one
hypercircle is needed to construct such a closed region. The main contributions of
the proposed algorithm in this paper are as follows: (1) This paper proposes a kind
of hypercircle hash technology, and compares it with the most advanced hyperplane
hash technique to verify the effectiveness of the proposed algorithm. (2) A new
distance measure function of the binary code is developed for the hypercircle hash
technique, which is called the spherical Hamming distance. (3) In order to realize
the balanced partition and independence maintenance of hash function, an iterative
optimization algorithm based on fulcrum gravity and repulsion is designed. (4) An
self-adaption setting scheme of hypercircle distance threshold is designed to improve
the sensitivity of local edge.

2. Hash function based on hypercircle

UseX = {x1, x2, · · · , xN} forD dimensional space of givenN data points, among
which xi ∈ RD represents the data points. The binary code corresponding to each
data point xi can be defined as: bi ∈ {−1,+1}l, l is the length of the code.

2.1. Binary code embedded function

The form of binary-edge-code embedded function is: H(x) = (h1(x), h2(x), · · · ,
hl(x)), among which the points in RD is mapped to the binary cube {−1,+1}l.
Use a hypercircle to define spherical hash function. Each spherical hash function is
defined by a fulcrum pi ∈ RD and distance threshold ti ∈ R+:

hi (x) =

{
−1, d (pi, x) > ti
+1, d (pi, x) ≤ ti

(1)

LARGE DATA ADAPTIVE HASH ALGORITHM 901

Among them, d (·, ·) is Euclidean distance between two points in RD; different dis-
tance measures (such as Lp measure) can be used to replace the Euclidean distance.
The hi (x) value of each spherical hash function can be used to indicate whether the
point x is located in the interior of the circle, center of which is pi and the radius is
ti. Figure 1a gives an example of space partition, which uses three hypercircles in
two-dimensional space for binary code assignment. Figure 1b is hyperplane binary
coding mode.

(a) Hypercircle coding (b) Hyperplane coding

Fig. 1. Binary code embedding method

Fig. 1. Binary code embedding method

The key difference between the use of hyperplanes and hypercircles for binary
codes calculation is that hyperplanes can define closed region indexed by binary
code in RD. In order to define closed region in D dimensional space, at least d + 1
hyperplanes are needed, and only one hypercircle can form closed region in any high
dimensional space. In addition, compared with the use of multiple hyperplanes, it is
possible to construct higher dimensional closed region by using multiple hypercircles,
while the distance between points in each region is bounded. For example, by using
l hypercircle, the number of bounded regions can be increased to:(

l − 1
d

)
+
∑d

i=0

(
l
i

)
. (2)

In addition, a large sphere with a larger radius and a further center can be used
to approximate the hyperplane. In the case of nearest neighbor location from the
query point, it is very important to use the exact boundary to form a closed region in
the nearest neighbor search. When constructing strictly enclosed region, the binary
code index region of the query point can include a better candidate.

2.2. Binary code distance

Most hyperplane-based binary code embedding method uses Hamming distance
[13, 14] between binary codes as bit number measure, namely |bi ⊕ bj |, among which
⊕ is bit-exclusive-or operation, |·| stands for digit number of 1 in given binary code.
This distance metric is used to characterize the number of hyperplanes of two given
points residing on their opposite sides. However, Hamming distance is not a good
way to reflect the properties of the strictly bounded closed region, which is the key
problem to be solved by using the proposed hash function.

In this regard, a new distance measure for binary codes is proposed, which is

902 YING PAN

called SHD (Spherical Hamming Distance), recorded as (dSHD (bi, bj))

dSHD(bi, bj) =
|bi ⊕ bj |
|bi ∧ bj |

. (3)

Among them, |bi∧bj | is digit of +1 between two binary codes, which can be simply
calculated by using bit operation. In the proposed spherical hashing distance, two
binary codes with the same +1 bits have tighter boundary information as compared
with those with the common -1 bits. This is mainly because each common +1 bit
represents the two data points is in interior of its corresponding hypercircle, which
is as shown in figure 2.

(a) Part belonging to single sphere (b) Part belonging to two spheres

(c) Part belonging to two spheres

Fig. 2. Spherical Hamming distance

In order to obtain the relationship between the distance boundary and the total
number of common +1 bits, the number function of the common +1 bits is used as
the mean of the average distance of the data points. Therefore, to use |bi ∧ bj | to
represent is reasonable.

In the implementation process, we can attach a small value (e.g., 0.1) to avoid
the denominator divided by zero. At the same time, when calculating SHD, in order
to avoid the high complexity of the calculation of the division operation, the author
proposes to construct a pre calculated SHD table T (|bi ∧ bj |, |bi ⊕ bj |), the size of
which is (l + 1)

2. Based on the distance constraints mentioned above, closed region
can be defined by using common + 1 bit between two binary codes. In this closed
region, we can further distinguish the distance between two binary codes based on
Hamming distance |bi ⊕ bj |.

2.3. Hash function independence

It is very important to realize the balanced partition of data points for each
hash function, and to maintain the independence of the hash function, because
independence of hash function can achieve equilibrium partitioning of data points

LARGE DATA ADAPTIVE HASH ALGORITHM 903

of different binary codes. If the above characteristics can be met, even if the length
of the code is very long, high precision and search efficiency can be obtained. The
form to define that each hash function hi has the same probability for the +1 and
-1 bits:

Pr [hi(x) = +1] =
1

2
, x ∈ X, 1 ≤ i ≤ l . (4)

A probabilistic event Vi is defined here to represent the situation hi(x) = +1,
and when the conditions Pr [Vi ∩ Vj] = Pr [Vi] · Pr [Vj] are met, the event Vi and Vj
meet independent relationship. Once we achieve a balanced partition for each data
point (meeting the formula 4), in the case of x ∈ X and 1 ≤ i < j ≤ l, the two data
bits meet the following formula:

Pr[hi(x) = +1, hj(x) = +1]

= Pr [hi(x) = +1] · Pr [hj(x) = +1] =
1

2
· 1
2
=

1

4
.

(5)

In general, the independence of the pairwise hash function does not guarantee the
independence of that of more than three higher orders. More than two independent
hash functions can also be formulated, which meets the constraint as shown in
formula 4 and formula 5. But this high order independence does not improve the
search quality.

2.4. Iterative optimization process

In this paper, an iterative optimization algorithm is proposed to realize the op-
timal calculation of l different hypercircle pivots pi and distance thresholds ti. The
algorithm is divided into two phases:

Phase 1: Sample the data points set X to obtain a subset S = {s1, s2, · · · , sn} of
samples to achieve the approximation of the data points set X, and then randomly
select l data points in the data subset S to achieve initialization of l hypercircle
pivot. However, it is observed that the initial convergence rate is faster when the
initial pivot is close to the training center. The main reason is that the closer the
initial hypercircle is, the more overlap. In order to accelerate the algorithm, the
pivot position of the hypercircle is located in the middle of the randomly selected
samples, that is:

pi =
1

g

g∑
j=1

qj . (6)

Among them, qj is randomly selected point from the data point subset S, g is
the number of data points. If the value of g is too small, it is not conducive to
the deployment of the pivot in the middle of the data points, and if the value of
g is too large, a lot of data points will be deployed in approximate position, and
computational complexity of the algorithm will be increased. Taking into account
the trade-off of space, it is found through experiments that if g = 10, a relatively
reasonable calculation results cen be obtained.

Phase 2: Refine the hypercircle pivots, and re calculate the distance threshold.

904 YING PAN

For 1 ≤ ij ≤ l, set two auxiliary variables oi and oi,j as:

oi = |{sg|hi(sg) = +1, l ≤ g ≤ n}| , (7)

oi,j = |{sg|hi(sg) = +1, hj(sg) = +1, 1 ≤ g ≤ n}| . (8)

Among them, |·| is the cardinality of given set. oi is the number of +1 bit points
in the subset S of the ith hash function, which will be used to satisfy the partition
balance of each ratio feature. Similarly, oi,j is the number of data points in the data
subset S, which contains the interior points of hypercircle corresponding to the ith
and the jth hash function. The role of oi,j in the iterative optimization algorithm is
to guarantee the independence of the ith and the jth hash function. After the above
two variables are calculated by data points in S subset, the optimization target is
obtained by the alternating optimization of the two phases:

oi =
n

2
, oi,j =

n

4
. (9)

Whether oi,j is close to or equal to n/4 is taken as the standard here to achieve
the adjustment of the two hypercircle pivots. Intuitively, for i and j of each hyper-
circle, when oi,j is larger than n/4, set force of repulsion between the two hypercircle
pivots to make them far away from each other; otherwise exert a force of attraction
to make them close to each other. Secondly, once the pivot is calculated, the dis-
tance threshold ti of the ith hypercircle is adjusted to make oi close to n/2 to meet
equilibrium partitioning of hypercircle data points.

Under the premise of satisfying the above constraints, the iterative optimization
process is carried out until the obtained hypercircle is no longer improved. The ideal
mean and standard deviation of oi,j is distributed as oi,j and n/4. However, in order
to avoid overfitting, the mean value and standard deviation threshold value of the
optimization algorithm are set up respectively as εm% and εs%, and according to
the experimental results, εm% = 10% and εs% = 15% are selected here.

Force calculation: definition of the force fi→j (attraction or repulsion) of pi on
pj is as shown in figure 3, the specific form is:

fi←j =
1

2

oi,j − n/4
n/4

(pi − pj) . (10)

 Fig. 3. Force calculation sketch map

LARGE DATA ADAPTIVE HASH ALGORITHM 905

The acceleration force fi can be expressed as the mean value calculated of the
other pivot forces in the form of:

fi =
1

l

l∑
j=1

fi←j . (11)

If the acceleration force fi is applied in pi, pi can be updated to pi + fi. The
proposed iterative optimization process is shown in algorithm 1.

Algorithm 1 iterative optimization process

Input: Sample points S = {s1, s2, · · · , sn}, error tolerances are εm and εs, and
the number of hash functions is l;

Output: Pivot position p1, p2, · · · , pl, distance threshold t1, t2, · · · , tl of hypercir-
cle l;

1: Use l randomly selected data points in the S to initialize the pivot position
p1, p2, · · · , pl;
pi =

1
g

g∑
j=1

qj

2: Based on section 2.5,determine t1, t2, · · · , tl, and meet oi = n/2;
3: Calculate oi,j for each pair of hash functions;
4: repeat
5: for i = 1: l - 1 do
6: for j = i + 1: l do
7: fi←j =

1
2
oi,j−n/4

n/4 (pi − pj);
8: fj←i = −fi←j ;
9: end for

10: end for
11: for i = 1: l do

12: fi =
1
l

1∑
l

fi←j ;

13: pi = pi + fi;
14: end for
15: Based on section 2.5,determine t1, t2, · · · , tland meet oi = n/2;
16: Calculate oi,j for each pair of hash functions;
17: until avg(|oi,j − n

4 |) ≤ εm
n
4 , std− dev (oi,j) ≤ εs

n
4

The computational complexity of the iterative optimization process above is
O
((
l2 + lD

)
n
)
. In fact, the iterative process of the proposed algorithm can be

completed within 30 times. In addition, its overall computing time is less than 30
seconds even for a long code of 128 bits.

906 YING PAN

2.5. Local edge sensitive distance threshold calculation

In each iteration computation step, it is necessary to determine the sensitivity
threshold t1, t2, · · · , tl of the local edge in order to meet oi = n/2 to achieve the
equalization of the partition. In this regard, distance d (pi, sn/2) between each ti
and sn/2 can be simply set, and the samples in S can be sorted as s1, s2, · · · , sn
according to the distance of pi. However, this simple approach may lead to an
unreasonable partition, especially when sn/2 is located in a dense region.

In this regard, this paper proposes a threshold optimization method based on
the maximum edge to firstly sort the distance d

(
pi, s

s
j

)
between samples in S and

pivots as ss1, ss2, · · · , ssn. The improved form proposed in this paper is to obtain set
J by optimizing using the candidate points at the middle point n/2:

J =

{
j|(1

2
− β)n ≤ j ≤ (

1

2
+ β)n, j ∈ Z+

}
. (12)

Among them, β is the tolerance parameter to control the standard of equilibrium
partition. Set β = 0.05 here, and then calculate the sort list ĵ of sample indexes
that can maximize the edge of hypercircle:

ĵ = argmax d(ti, s
s
j+1)− d(ti, ssj) . (13)

The value of the distance threshold ti can be calculated according to hyperplane
partition ss

ĵ
and ss

ĵ+1
, which can be calculated as follows:

ti =
1

2
(d(ti, s

s
ĵ
) + d(ti, s

s
ĵ+1

)) . (14)

3. Performance evaluation

In this section, the author will analyze the performance of the proposed algorithm,
the experimental hardware is set as: Xeon X5690 machine with the memory size of
24GB, which can store complete data set.

3.1. Test data set

During the experiment, the following four data sets were selected as the test
object, specific information is as follows:

(1) GIST-1M-384D data set, 384 dimensional set, including one million GIST
descriptors of small image subsets.

(2) GIST-1M-960D data set, 960 dimensional set, also including one million GIST
descriptors.

(3) GIST-75M-384D data set, 384 dimensional set, including 75 million GIST
descriptors of 80 million small image subsets.

(4) ILSVRC data set, one million 1000 dimensional descriptors, which are a subset
of the ImageNet database.

LARGE DATA ADAPTIVE HASH ALGORITHM 907

(5) VLAD-1M-8192D data set, one million 8192 dimensional VLAD descriptors
(128 dimensional SIFT features and 64 codebook vector).

3.2. Performance testing

Randomly select a subset of 1000 queries in GIST-1M-384D, GIST-1M-960D and
VLAD-1M-8192D databases, randomly select a subset of 500 queries in GIST-75M-
384D, data points of these subsets do not overlap each other. The mean accuracy
index (mAP) was used to evaluate the algorithm. When calculating the accuracy
index, it is considered that all items have low or equal Hamming distance from the
given query. The contrast algorithm is selected as follows:

(1) LSH and LSH-ZC algorithm, respectively represent the local sensitive hash
algorithm with zero center data points. (2) LSBC algorithm, local sensitive binary
code, the bandwidth parameter used in the experiment is the reciprocal of the aver-
age distance between the data points in the data set. (3) SpecH algorithm, spectral
hashing algorithm. (4) PCA-ITQ algorithm, iterative quantization algorithm. (5)
RMMH-L2 algorithm, random maximum margin hashing (RMMH) algorithm with
triangular L2 kernel, the parameter M of number of samples of each hash function
is set as 32. (6) GSPICA-RBF algorithm, generalized similarity preserving indepen-
dent component analysis (GSPICA) algorithm with RBF kernel function, in which
the parameters γ and P are set as 1. (7) Ours-HD and Ours-SHD algorithms, respec-
tively representing taking the algorithm steps in this paper and using the common
Hamming distance (Ours-HD) and the binary code distance (Ours-SHD) in this pa-
per. Ours-HD and Ours-SHD algorithms use threshold segmentation method based
on the maximum edge distance.

For the above hash method, 100k parameters are randomly selected from the
original data set as the training set to estimate algorithm parameters. For each
algorithm, 5 experiments were performed to obtain more statistically significant
results. Figure 4 shows the mAP index of the nearest neighbor query results on
the GIST-1M-384D dataset when k = 100. Figure 5 shows the mAP index of the
nearest neighbor query results on the GIST-1M-960D dataset when k = 100. Figure
6 shows the mAP index of the nearest neighbor query results on the ILSVRC dataset
k = 100. Figure 7 shows the mAP index of the nearest neighbor query results on
the VLAD-1M-8192D dataset k = 100.

Figure 4 shows that the mAP index of Ours-SHD algorithm is better from the
32 bit to the 512 bit, and the advantages of this algorithm are more obvious with
the increase of bit length. The main reason is that the multiple hypercircles used in
this paper can be more effective than the plane closed region to create tight distance
boundary. In Figure 8, for the given 0.1mAP index, this paper uses 128 bits to
encode each image, while the other methods are more than 256 bits. Therefore,
this algorithm is 2 times more compact than other algorithms. Once the nearest
neighbor image is determined based on the binary code, the binary code can be used
for additional reordering of these images. The results of Figure 5∼ Figure 7 show
similar results with Figure 4, because the ILSVRC dataset and the VLAD-1M-8192D
dataset are large, in the experiments in Figure 6∼7, only part of the algorithm is

908 YING PAN

 Fig. 4. Comparison of mAP index (GIST-1M-384D)

 Fig. 5. Comparison of mAP index (GIST-1M-960D)

 Fig. 6. Comparison of mAP index (ILSVRC)

selected for the experiment.
When assigning 64 bit coding for each image, Figure 8 shows recall curve of

different methods for different number of hash tables in GIST-75M-384D data set,

LARGE DATA ADAPTIVE HASH ALGORITHM 909

 Fig. 7. Comparison of mAP index (VLAD-1M-8192D)

 Fig. 8. Recall rate index comparison (GIST-75M-384D)

Ours-SHD, RMMH-L2, GSPICA-RBF, PCA-ITQ, LSH-ZC, LSBC and Ours-HD
algorithms are selected as comparison algorithms. Table 1 gives a comparison of the
computational time of the proposed algorithm and the selected algorithms in the 32
bit to the 512 bit.

According to the results of Figure 8, we can see that the performance of the
proposed algorithm is better than that of other algorithms because it uses more
hash tables, which reflects the good checking performance of the algorithm.

The experimental results of Table 1 show that in calculation efficiency the calcu-
lation time of the proposed algorithm distributes between 3.2∼9.3s, the calculation
time of Ours-HD algorithm distributes between 3.1∼9.8s, the computation time of
the two algorithms is superior to several other comparison algorithms, the computing
time is far longer than that of the proposed algorithm in this paper, based on which
the advantage of the proposed algorithm in computational efficiency is verified.

910 YING PAN

Table 1. Comparison of computation time on GIST-1M-384D data set (*10s)

algorithm 32 64 128 256 512

Ours-SHD 33.2 44.5 5.8 7.6 9 .3
LSBC 88.6 110.3 13.4 18.5 26.8
SpecH 77.8 99.6 12.8 17.3 23.4

PCA-ITQ 99.3 112.3 18.6 28.3 39.4

RMMH-L2 88.1 99.6 12.6 19.3 24.8
GSPICA-RBF 66.8 88.9 11.5 15.8 19.4

Ours-HD 33.1 44.8 66.4 8.6 9.8

4. Conclusion

This paper proposes a hypercircle hash binary code embedding technology based
on local edge sensitive threshold, uses hypercircle to improve hash binary code cal-
culation process, uses multiple hypercircles to construct closed region of high dimen-
sion, designs special binary code distance measure function and iterative optimiza-
tion algorithm based on pivot attraction and repulsion, the experimental results
verify the effectiveness of the proposed algorithm. In the next step, the research
direction is to expand the arbitrary kernel function of the hypercircle hash binary
code embedding technique.

Acknowledgement

Design and implementation of ARP spoofing defense system of campus network
(12533041).

References

[1] Zhang X, Cui Y, Li D, et al.: (2012) An adaptive mean shift clustering algo-
rithm based on locality-sensitive hashing [J]. Optik - International Journal for Light
and Electron Optics, 123(20):1891–1894.

[2] Ali S H A, Fukase K, Ozawa S: (2016) A fast online learning algorithm of radial
basis function network with locality sensitive hashing [J]. Evolving Systems, 7(3):1-14.

[3] Cao Y, Liu F, Cai X: (2013) Research on high dimension image data indexing tech-
nology based on locality sensitive Hashing algorithm[J]. Journal of Liaoning University
of Technology, 33(1).

[4] Nehme R V, Works K, Lei C, et al.: (2013) Multi-route query processing and
optimization[J]. Journal of Computer & System Sciences, 79(3):312-329.

[5] Wang D, Chai K Y: (2011) Exploring Locality of Reference in P2P VoD Systems[C]//
Global Telecommunications Conference. IEEE Xplore, 2011:1-6.

[6] Zhou Y, Liu C, Li N, et al.: (2016) A novel locality-sensitive hashing algorithm
for similarity searches on large-scale hyperspectral data[J]. Remote Sensing Letters,
7(10):965-974.

[7] Carli L D, Sommer R, Jha S: (2014) Beyond Pattern Matching:A Concurrency
Model for Stateful Deep Packet Inspection[J]. 28(4):1378-1390.

LARGE DATA ADAPTIVE HASH ALGORITHM 911

[8] Nissim N, Cohen A, Glezer C, et al.: (2015) Detection of malicious PDF files
and directions for enhancements: A state-of-the art survey [J]. Computers & Security,
48(C):246-266.

[9] Abhirama M, Bhaumik S, Dey A, et al.: (1991) Stability-conscious Query Opti-
mization[J]. Electrochimica Acta, 36(10):1579-1583.

[10] Wang X, Wang X, Varma R K, et al.: (2009) Selection of hyperfunctional siRNAs
with improved potency and specificity.[J]. Nucleic Acids Research, 37(22):e152.

[11] Duan S, Thummala V, Babu S: (2009) Tuning database configuration parameters
with iTuned [J]. Proceedings of the Vldb Endowment, 2(1):1246-1257.

[12] Li F, Klette R: (2008) Adaptive Mean Shift-Based Clustering [J]. Lecture Notes in
Computer Science, 40(11):1002-1009.

[13] Duan S, Fokoue A, Hassanzadeh O, et al.: (2012) Instance-Based Matching of
Large Ontologies Using Locality-Sensitive Hashing[J]. 7649:49-64.

[14] He Z, Wang Q: (2008) A Fast and Effective Dichotomy Based Hash Algorithm for
Image Matching [C]// Advances in Visual Computing, International Symposium, Isvc
2008, Las Vegas, Nv, Usa, December 1-3, 2008. Proceedings. DBLP, 2008:328-337.

[15] Zhu Z, Xiao J, He S, et al.: (2015) A multi-objective memetic algorithm based on
locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery prob-
lem[J]. Information Sciences, 329:73-89.

Received May 7, 2017

912 YING PAN

	 Ying Pan: Large data adaptive hash algorithm based on local sensitive learning
	Introduction
	Hash function based on hypercircle
	Performance evaluation
	Conclusion

